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quasi-quotient and record extremal quasi-product are obtained. Moreover, the classes of
the non-degenerate limit distribution functions of these statistics are derived.
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1. Introduction

Record values arise naturally in many practical problems and there are several situations pertaining to meteorology,
hydrology, sporting and athletic events wherein only record valuesmay be recorded. Suppose that {Xn, n ≥ 1} is a sequence
of mutually independent random variables (rv’s) with common distribution function (df) F(x). We say Xj is an upper record
value of {Xn, n ≥ 1}, if Xj:j > Xj−1:j−1, j > 1. An analogous definition deals with lower record values. By definition X1 is
an upper as well as lower record value. Thus, the upper and the lower record values in the sequence {Xn, n ≥ 1} are the
successivemaxima and the successiveminima, respectively. The upper (lower) record time sequence {Nn, n ≥ 1} ({Mn, n ≥
1}) is defined by Nn = min{j : j > Nn−1, Xj > XNn−1 , n > 1} and N1 = 1 (Mn = min{j : j > Mn−1, Xj < XMn−1 , n > 1}
and M1 = 1). Then the upper (lower) record value sequence {Rn}({Ln}) is defined by Rn = XNn(Ln = XMn) and it can be

expressed in terms of the function h(x) = − log F(x)

h̃(x) = − log F(x)


, where F(x) = 1 − F(x), e.g., the exact df of the

upper (lower) record value is given by (cf. Arnold et al., 1998)

P(Rn ≤ x) = Γn(h(x))

P(Ln ≤ x) = Γn(h̃(x))


, n > 1,
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where Γn(x) = 1
Γ (n)

 x
0 tn−1e−tdt is the incomplete gamma ratio function. The well-known asymptotic relation Γn(

√
nx +

n)−→n N (x) (−→n stands for convergence, as n→∞), for all real values of x, where N (x) is the standard normal distribution,
enables us to deduce the following basic result, which is originally due to Tata (1969) (see also Corollary 6.4.1 in Galambos,
1987).

Lemma 1.1. Let sn be a sequence of integer numbers, such that sn−→n ∞. Then, there are constants an, ãn > 0 and bn, b̃n ∈ R,
such that

ΦRsn (anx+ bn) = P(Rsn ≤ anx+ bn)
w
−→n ΦR(x) (1.1)

and

ΦLsn (ãnx+ b̃n) = P(Lsn ≤ ãnx+ b̃n)
w
−→n ΦL(x) (1.2)

( w
−→n stands for weak convergence, as n→∞), whereΦR(x) andΦL(x) are non-degenerate df’s, if and only if h(anx+bn)−sn√

sn
−→n V (x)

and h̃(ãnx+b̃n)−sn√
sn

−→n V (−x), respectively, where V (x) is finite on an interval and has at least two growth points. In this case we have
ΦR(x) = N (V (x)) and ΦL(x) = 1−N (V (−x)).

Resnick (1973) showed that the function V (.) can only take three possible types (denoted by Vj(x; γ ), j = 1, 2, 3, γ > 0),
or equivalently there are only three kinds of distributions that could arise as limiting distributions of suitably normalized
upper (lower) record values. Namely, the only possible limiting distributions of suitably normalized upper record value are
Hj,γ (x) = N (Vj(x; γ )), γ > 0, j = 1, 2, and H3,γ (x) = H3,0(x) = N (V3(x)), where

V1(x; γ ) =


−∞, x < 0,
γ log x, x ≥ 0; V2(x; γ ) =


−γ log | x |, x < 0,
∞, x ≥ 0;

V3(x; γ ) = V3(x) = x, ∀ x. (1.3)

In this case we say that F is in the domain of upper record attraction of Hj,γ and write F ∈ DR(Hj,γ ). Throughout this paper,
we will assume that F ∈ DR(Hj,γ ), j ∈ {1, 2, 3}. The following theorem due to Resnick (1973) (see also Arnold et al., 1998)
is needed in our study:

Theorem 1.1 (The Duality Theorem). If F is a continuous df with an associated df Fa, which is defined by Fa(x) = 1 −
exp(−

√
h(x)), and ΨF (n) = inf {y : F(y) > 1 − e−n} = F−1(1 − e−n)→n x0 = sup{x : F(x) < 1}, then the following

limit implications hold:

(i) F ∈ DR(H1,γ ) if and only if Fa ∈ D(G1, γ
2
). In this case F−1(1) = x0 = ∞ and we may use as normalizing constants

an = ΨF (n) and bn = 0;
(ii) F ∈ DR(H2,γ ) if and only if Fa ∈ D(G2, γ

2
). In this case F−1(1) = x0 is necessarily finite and we may use as normalizing

constants an = x0 − ΨF (n) and bn = x0;
(iii) F ∈ DR(H3,0) if and only if Fa ∈ D(G3,0) and in this case we may use as normalizing constants an = ΨF (n+

√
n)−ΨF (n)

and bn = ΨF (n),

where Gj,γ (x) = exp(− exp(−(Vj(x; γ )))), j = 1, 2, 3, are the well-known limit distributions of the maximum order statistics
(see, Galambos, 1987).

Our aim in this paper is to study the asymptotic behavior of the joint upper (lower) record values. This problem is recently
tackled by Barakat et al. (2014), for m-generalized order statistics when m > −1, i.e., the record values case was excluded
from this study. In this paper we will fill this gap. Moreover, as application of this study, we could study the asymptotic
behavior of some simple functions of record values, which have important applications. Namely, the record quasi-range
Wn = Rsn − Rrn , the record quasi-midrange Mn =

Rsn+Rrn
2 , the record extremal quasi-quotient Qn =

Rsn
Rrn

and the record
extremal quasi-product Pn = RsnRrn , where rn < sn are two sequences of integers. We derive the possible non-trivial and
trivial limit df’s of all suitably normalized preceding statistics, the trivial limit is defined when the convergence takes place,
such that one of the statistics Rsn and Rrn outweighs the other (see De Haan, 1974). This problem is recently tackled by
Barakat et al. (2015a), for m-generalized order statistics when m > −1, i.e., the record values case was excluded from this
study. Moreover, the same problem is studied for record values in Barakat et al. (2015b), but for the following special cases:
the record range Wn = Rn − R1 = Rn − X1, the record midrange Mn =

Rn+R1
2 =

Rn+X1
2 , the record extremal quotient

Qn =
Rn
R1
=

Rn
X1

and the record extremal product Pn = RnR1 = RnX1. El Arrouchi (2016) is a recent relevant work to the
asymptotic behavior of functions of record values, where some specific characterization results of tail df’s by the ratios of
the successive record values are obtained. Moreover, Gut and Stadtmüller (2016) studied the weak convergence of counting
variables for record values and the record times.
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2. Asymptotic theory of joint record values

In this section we study the asymptotic behavior of the joint df of Rsn and Rrn , as well as the joint df of Lsn and Lrn , where
rn < sn are two sequences of integers. It is well-known that the asymptotic independence between any two upper records
Rrn and Rsn , as well as any two lower records Lsn and Lrn , occurs if and only if sn − rn−→n ∞ (cf. Barakat, 2007). Therefore,
the only correct way to study the asymptotic behavior of the joint df ΦRrn ,Rsn (xn, yn) = P(Rrn ≤ xn, Rsn ≤ yn) = P(Rrn ≤

x−bn
an

, Rsn ≤
y−dn
cn

) (ΦLrn ,Lsn (x̃n, ỹn) = P(Lrn ≤ x̃n, Lsn ≤ ỹn) = P(Lrn ≤
x−b̃n
ãn

, Lsn ≤
y−d̃n
c̃n

)), where an, cn > 0 and bn, dn ∈ R
(ãn, c̃n > 0 and b̃n, d̃n ∈ R) are suitable normalizing constants, is to consider the following three disjoint and exhausted
cases:
1. r = rn is constant with respect to n and sn−→n ∞.
2. Both of the indices tend to infinity (i.e., sn, rn−→n ∞) and sn − rn−→n ∞.
3. Both of the indices tend to infinity and sn − rn−→n m, wherem is a finite integer.

Theorem 2.1 (The Asymptotic Behavior of the Joint Upper Record Values). Let an > 0 and bn be normalizing constants for
which (1.1) is satisfied. Furthermore, let {rn} and {sn} be subsequences of {n}, such that rn < sn. Finally, let xn = arnx+ brn and
yn = asny+ bsn . Then,

1. ΦRrn ,Rsn (x, yn)
w
−→n Γr(h(x))N (Vj(y; γ )), j ∈ {1, 2, 3}, if r = rn is constant with respect to n and sn−→n ∞.

2. Moreover, ΦRrn ,Rsn (xn, yn)
w
−→n N (Vj(x; γ ))N (Vj(y; γ )), j ∈ {1, 2, 3}, if sn, rn−→n ∞ and sn − rn−→n ∞.

3. Finally, ΦRrn ,Rsn (xn, yn)
w
−→n


N (Vj(y; γ )), y ≤ x,
N (Vj(x; γ )), x < y, j ∈ {1, 2, 3},

if both of the indices tend to infinity and sn − rn−→n m, where m ≥ 1.

Proof. The proof of Part (2) follows immediately by applying Lemma 1.1 and by using the fact that the asymptotic
independence between the upper records Rrn and Rsn occurs if and only if sn− rn−→n ∞. Moreover, by the same argument we
get ΦRr ,Rsn (x, yn)

w
−→n Γr(h(x))N (Vj(y; γ )), which implies the result of Part (1). To prove Part (3), we first consider the fact (cf.

Arnold et al., 1998) that the record values R⋆
sn and R⋆

rn from exponential distribution can be seen as sums of i.i.d. exponential
rv’s, i.e., as R⋆

sn =
sn

i=1 Zi and R⋆
rn =

rn
i=1 Zi. Thus, R

⋆
sn and R⋆

rn are gamma distributed. Let φR⋆
rn
(.) be the probability density

function (pdf) of R⋆
rn . Then, by using the continuous total probability rule, we get

ΦRrn ,Rsn (xn, yn) = P(R⋆
rn ≤ − log F(xn), R⋆

sn ≤ − log F(yn))

=

 h(xn)

0
P(R⋆

sn−rn ≤ h(yn)− w)φR⋆
rn
(w)dw

=
1

(rn − 1)!

 h(xn)

0
Γsn−rn (h(yn)− w) wrn−1e−wdw.

Thus, the joint df of the normalized statistics Rrn and Rsn , is given by

ΦRrn ,Rsn (xn, yn) =


Γsn(h(yn)), yn ≤ xn,

1
(rn − 1)!

 h(xn)

0
Γsn−rn (h(yn)− w) wrn−1e−wdw, xn < yn.

(2.1)

Now, for large n, we can show that the two inequalities x < y and x ≥ y imply the two inequalities xn < yn and xn ≥ yn,
respectively. Indeed, since we have sn − rn−→n m, then, for all x, y, for which Vj(x; γ ) and Vj(y; γ ) are finite, we get

Vj(y; γ )− Vj(x; γ ) = lim
n→∞

h(yn)− h(xn)− (sn − rn)
√
sn

= lim
n→∞

h(yn)− h(xn)
√
sn

,

which implies that h(yn)−h(xn)−→n +∞, if x < y and h(yn)−h(xn)−→n −∞, if y ≤ x. This equivalent to the two inequalities
x < y and x ≥ y imply xn < yn and xn ≥ yn, respectively, for large n (since the function Vj(.) is monotone increasing and the
function h(.) is monotone non-decreasing). By using this fact and the relation (2.1), we immediately get the proof of Part (3),
when y ≤ x. On the other hand, for all xn < yn, Eq. (2.1) clearly yields the following inequalities

Γsn−rn(h(yn)− h(xn))Γrn(h(xn)) ≤ ΦRrn ,Rsn (xn, yn) ≤ Γsn−rn(h(yn))Γrn(h(xn)). (2.2)

Since, h(yn)−→n ∞ and sn−rn−→n m, then the right hand side of the inequality (2.2)weakly converges toN (Vj(x; γ )).Moreover,
since h(yn) − h(xn)−→n +∞, if x < y, then the left hand side of the inequality (2.2) also weakly converges to N (Vj(x; γ )).
The proof is completed. �

Theorem 2.2 (The Asymptotic Behavior of the Joint Lower Record Values). Let ãn > 0 and b̃n be normalizing constants for
which (1.2) is satisfied. Furthermore, let {rn} and {sn} be subsequences of {n}, such that rn < sn. Finally, let x̃n = ãrnx+ b̃rn and
ỹn = ãsny+ b̃sn . Then,
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1. ΦLrn ,Lsn (x, ỹn)
w
−→n Γr(h̃(x)) (1−N (Vj(−y; γ ))), j ∈ {1, 2, 3}, if r = rn is constant with respect to n and sn−→n ∞.

2. Moreover, ΦLrn ,Lsn (x̃n, ỹn)
w
−→n (1−N (Vj(−x; γ ))) (1−N (Vj(−y; γ ))), j ∈ {1, 2, 3}, if sn, rn−→n ∞ and sn − rn−→n ∞.

3. Finally, ΦLrn ,Lsn (x̃n, ỹn)
w
−→n


1−N (Vj(−x; γ )), x ≤ y,
1−N (Vj(−y; γ )), y < x, j ∈ {1, 2, 3},

if both of the indices tend to infinity and sn − rn−→n m, where m ≥ 1.

Proof. The proof of Part (2) follows immediately by applying Lemma 1.1 and by using the fact that the asymptotic
independence between the lower records Lsn and Lrn occurs if and only if sn− rn−→n ∞. Moreover, by the same argument we
get ΦLr ,Lsn (x, ỹn)

w
−→n Γr(h̃(x))(1−N (Vj(−y; γ ))), which implies the result of Part (1). To prove Part (3), we first consider the

joint pdf of the normalized Lrn and Lsn , for rn < sn, which is given by (cf. Ahsanullah, 1995)

φLrn ,Lsn (x̃n, ỹn) =
[h̃(x̃n)]rn−1

(rn − 1)!
[h̃(ỹn)− h̃(x̃n)]sn−rn−1

(sn − rn − 1)!
f (x̃n)f (ỹn)

F(x̃n)
, ỹn < x̃n.

Therefore, the joint df of the normalized lower record values Lrn and Lsn , for ỹn < x̃n, is given by

ΦLrn ,Lsn (x̃n, ỹn) = P(Lrn ≤ x̃n, Lsn ≤ ỹn)

=

 ỹn

−∞

 x̃n

v

[− log F(u)]rn−1

(rn − 1)!
[− log F(v)+ log F(u)]sn−rn−1

(sn − rn − 1)!
(F(u))−1f (u)f (v)dudv.

Let U = F(u) and V = F(v), we obtain

ΦLrn ,Lsn (x̃n, ỹn) =
 F(ỹn)

0

 F(x̃n)

V

[− logU]rn−1

(rn − 1)!
[− log V + logU]sn−rn−1

(sn − rn − 1)!
U−1dUdV .

By using the transformation w = − logU, z = − log V (and then use the transformation t = w
z ), we get

ΦLrn ,Lsn (x̃n, ỹn) =

∞

− log F(ỹn)

 z

− log(F(x̃n))

wrn−1

(rn − 1)!
(z − w)sn−rn−1

(sn − rn − 1)!
e−zdwdz

=
1

(rn − 1)!(sn − rn − 1)!


∞

− log F(ỹn)
zsn−1e−z

 1

− log F(x̃n)
z

t rn−1(1− t)sn−rn−1dt


dz

=
1

(sn − 1)!


∞

− log F(ỹn)
zsn−1e−z


1− I− log F(x̃n)

z
(rn, sn − rn)


dz

= 1− Γsn(h̃(ỹn))−
1

(sn − 1)!


∞

h̃(ỹn)
zsn−1e−z I h̃(x̃n)

z
(rn, sn − rn)dz,

where Ix(a, b) = 1
β(a,b)

 x
0 ta−1(1−t)b−1dt is the incomplete beta ratio function. Thus, the joint df of the normalized statistics

Lrn and Lsn , is given by

ΦLrn ,Lsn (x̃n, ỹn) =


Γrn(h̃(x̃n)), x̃n ≤ ỹn,

1− Γsn(h̃(ỹn))−
1

(sn − 1)!


∞

h̃(ỹn)
zsn−1e−z I h̃(x̃n)

z
(rn, sn − rn)dz, ỹn < x̃n.

(2.3)

Now, for large n, we can show that the two inequalities x ≤ y and x > y imply the two inequalities x̃n ≤ ỹn and x̃n > ỹn,
respectively. Indeed, for all x, y, for which Ṽj(x; γ ) = Vj(−x; γ ) and Ṽj(y; γ ) = Vj(−y; γ ) are finite, we get

Ṽj(y; γ )− Ṽj(x; γ ) = lim
n→∞

h̃(ỹn)− h̃(x̃n)− (sn − rn)
√
sn

= lim
n→∞

h̃(ỹn)− h̃(x̃n)
√
sn

,

which implies that h̃(ỹn)− h̃(x̃n)−→n +∞, if y < x and h̃(ỹn)− h̃(x̃n)−→n −∞, if x ≤ y. This equivalent to the two inequalities
x ≤ y and x > y implies x̃n ≤ ỹn and x̃n > ỹn, respectively, for large n (since the function Ṽj(.) ismonotone decreasing and the
function h̃(.) is monotone non-increasing). By using this fact and the relation (2.3), we immediately get the proof of Part (3),
when x ≤ y. On the other hand, for all ỹn < x̃n, Eq. (2.3) clearly yields the following inequalities

1− Γsn(h̃(ỹn))

1− I h̃(x̃n)

h̃(ỹn)

(1, sn − rn)

≤ 1− Γsn(h̃(ỹn))−

1
(sn − 1)!


∞

h̃(ỹn)
zsn−1e−z I h̃(x̃n)

z
(1, sn − rn)dz

≤ 1− Γsn(h̃(ỹn))−
1

(sn − 1)!


∞

h̃(ỹn)
zsn−1e−z I h̃(x̃n)

z
(rn, sn − rn)dz

≤ ΦLrn ,Lsn (x̃n, ỹn) ≤ 1− Γsn(h̃(ỹn)). (2.4)
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Clearly, the right hand side of the inequality (2.4) weakly converges to 1 − N (Vj(−y; γ )). On the other hand, since,
sn−rn−→n m and under the conditions of Theorem 2.2,α(F)←−n ỹn < x̃n−→n α(F), whereα(F) = inf{x : F(x) ≥ 0} ≥ −∞ is the
left end-point of the df F , then h̃(x̃n)

h̃(ỹn)
−→n 0, for all y < x. Thus, the left hand side of the inequality (2.4) also weakly converges

to the limit 1−N (Vj(−y; γ )). This completes the proof of Theorem 2.2. �

3. Application: weak convergence of some record functions

Let An:t > 0 and Bn:t ∈ R, t = w,m, q, p, be suitable normalizing constants. Furthermore, let W ∗n = A−1n:w(Wn −

Bn:w),M∗n = A−1n:m(Mn− Bn:m),Q ∗n = A−1n:q(Qn− Bn:q) and P∗n = A−1n:p(Pn− Bn:p). The following two theorems fully characterize
the possible limit non-degenerate df’s (trivial and non-trivial) of the statisticsW ∗n ,M∗n ,Q

∗
n and P∗n , in the case sn − rn−→n ∞.

Theorem 3.1. Let rn = r = constant
1. If F ∈ DR(H1,γ ), then P(W ∗n ≤ w)

w
→n H1,γ (w) and P(M∗n ≤ m)

w
→n H1,γ (m), where the two limit laws are trivial, since

Rsn outweighed Rr . In this case, the normalizing constants can be chosen such as 2An:m = An:w = asn = ΨF (sn) and
Bn:m = Bn:w = 0. Moreover,

P(Q ∗n ≤ q)
w
→n


Γr(h(0))+


∞

0
H1,γ (qt)dΓr(h(t)), if q ≥ 0, 0

−∞

H1,γ (qt)dΓr(h(t)), if q < 0

and

P(P∗n ≤ p)
w
→n


Γr(h(0))+


∞

0
H1,γ

p
t


dΓr(h(t)), if p ≥ 0, 0

−∞

H1,γ

p
t


dΓr(h(t)), if p < 0,

where H1,γ (.) = 1− H1,γ (.) and we can take An:q = An:p = asn = ΨF (sn) and Bn:q = Bn:p = 0.
2. If (a) F ∈ DR(H2,γ ), x0 > 0, or (b) F ∈ DR(H3,0), 0 < x0 <∞, then

P(W ∗n ≤ w)
w
→n Γ r(h(−x0w)), w ≥ 0, (trivial limit law, since Rr outweighed Rsn),

P(M∗n ≤ m)
w
→n Γr(h(x0m)) (trivial limit law, since Rr outweighed Rsn),

P(Q ∗n ≤ q)
w
→n P


1
Rr
≤ q+ 1


(trivial limit law, since Rr outweighed Rsn),

and

P(P∗n ≤ p)
w
→n P(Rr ≤ p+ 1) = Γr(h(p+ 1)) (trivial limit law, since Rr outweighed Rsn),

where Γ r(.) = 1 − Γr(.) and the normalizing constants can be chosen such as 2An:m = An:w = An:q = An:p = bsn and
Bn:w = Bn:m = Bn:q = Bn:p = bsn .

3. If F ∈ DR(H3,0), x0 = ∞ and a−1sn = (ΨF (sn +
√
sn)− ΨF (sn))−1→n K <∞, then

P(W ∗n ≤ w)
w
→n

H3,0(w), if K = 0 (trivial limit),

H3,0(w) ∗ Γ r


h

−

w

K


, if K > 0,

P(M∗n ≤ m)
w
→n

H3,0(m), if K = 0 (trivial limit),

H3,0(m) ∗ Γr


h
m
K


, if K > 0,

where ‘‘∗’’ denotes the convolution operator and the normalizing constants can be chosen such as 2An:m = An:w = asn =
ΨF (sn +

√
sn)− ΨF (sn) and Bn:w = Bn:m = bsn = ΨF (sn).

4. If F ∈ DR(H3,0), x0 = ∞ and ΨF (sn+
√
sn)

ΨF (sn)
→n 1, then

P(Q ∗n ≤ q)
w
→n P


1
Rr
≤ q+ 1


(trivial limit law),

and

P(P∗n ≤ p)
w
→n P(Rr ≤ p+ 1) = Γr(h(p+ 1)) (trivial limit law),

where An:q = An:p = bsn = ΨF (sn) and Bn:q = Bn:p = bsn .
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Proof. First, by applying Theorem 29.2 of Billingsley (1979), which is particular case of a general result known as the
continuous mapping theorem, we get the following basic limit relation

P(g(Un, Vn) ≤ x)
w
→n P(g(U, V ) ≤ x), (3.1)

where g(u, v) = u ± v, or u
v
, or uv, P(Un ≤ x) w

→n P(U ≤ x), P(Vn ≤ y) w
→n P(V ≤ y) and P(Un ≤ x)P(Vn ≤ y) w

→n P(U ≤ x,
V ≤ y). On the other hand, it is easy to check the validity of the following equalities:

W ∗n =


R∗sn −

Rr

asn
, if An:w = asn , Bn:w = bsn = 0,

asnb
−1
sn R∗sn −

Rr

bsn
, if An:w = bsn , Bn:w = bsn ,

(3.2)

M∗n =


R∗sn +

Rr

asn
, if 2An:m = asn , Bn:m = bsn = 0,

asnb
−1
sn R∗sn +

Rr

bsn
, if 2An:m = bsn , Bn:m = bsn ,

(3.3)

Q ∗n =


R∗sn
Rr

, if An:q = asn , Bn:q = bsn = 0,

asnb
−1
sn R∗sn − (Rr − 1)

Rr
, if An:q = bsn , Bn:q = bsn ,

(3.4)

P∗n =


R∗snRr , if An:p = asn , Bn:p = bsn = 0,

asnb
−1
sn R∗snRr + (Rr − 1), if An:p = bsn , Bn:p = bsn .

(3.5)

Now, by using (3.1), Theorems 1.1, 2.1 and Lemma2.2.1 inGalambos (1987) (note that asn−→n x0 = ∞), the four limit relations
in the first part of the theorem follow immediately from the first parts of (3.2)–(3.5), respectively. Also, the four limit relations
in the second part of theorem follow from the second relations of (3.2)–(3.5), respectively, and Theorems 1.1, 2.1 (note that
Theorem 1.1 implies asnb

−1
sn
→n 0, in Parts(a) and (b)). Moreover, the two limit relations in Part (3) follow from the first part

of (3.2) and (3.3), respectively, and Theorem 1.1, where the condition a−1sn = (ΨF (sn +
√
sn) − ΨF (sn))−1→n 0 implies the

trivial limit (where R∗sn outweighs Rr
asn

), while the condition a−1sn = (ΨF (sn +
√
sn) − ΨF (sn))−1→n K > 0 implies the given

non-trivial limit law. Finally, the two limit relations of Part (4) follow from the two equalities in the second part of (3.4) and
(3.5), respectively, and Theorems 1.1, 2.1, where the condition ΨF (sn+

√
sn)

ΨF (sn)
→n 1 implies asnb

−1
sn
→n 0. �

Theorem 3.2. Let rn−→n ∞.

1. If F ∈ DR(H1,γ ) and ΨF (rn)
ΨF (sn)

−→n c, 1 ≥ c ≥ 0, then P(W ∗n ≤ w)
w
→n H1,γ (w)∗H1,γ (−w

c ) and P(M∗n ≤ m)
w
→n H1,γ (m)∗H1,γ (m

c ),
where the trivial limit case occurs if c = 0, since in this case Rsn outweighs Rrn . In this case, the normalizing constants can be
taken as 2An:m = An:w = asn = ΨF (sn) and Bn:m = Bn:w = 0. On the other hand, if F ∈ DR(H1,γ ), then

P(Q ∗n ≤ q)
w
→n



∞

0
H1,γ (qt)dH1,γ (t), q ≥ 0,

0, q < 0
and

P(P∗n ≤ p)
w
→n



∞

0
H1,γ

p
t


dH1,γ (t), p ≥ 0,

0, p < 0,

where we can take An:q = An:p =
asn
arn
=

ΨF (sn)
ΨF (rn)

and Bn:q = Bn:p = 0.

2. If F ∈ DR(H2,γ ) and d2:n =
asn
arn

(=
x0−ΨF (sn)
x0−ΨF (rn)

)−→n d2, 1 ≥ d2 ≥ 0, then P(W ∗n ≤ w)
w
→n H2,γ ( w

d2
) ∗ H2,γ (−w) and

P(M∗n ≤ m)
w
→n H2,γ ( m

d2
) ∗ H2,γ (m), where the trivial limit case occurs if d2 = 0 (since, Rrn outweighs Rsn ). In this case,

we can take 2An:m = An:w = arn = x0 − ΨF (rn) and Bn:m = Bn:w = bsn − brn = x0 − x0 = 0. Moreover, if x0 ≠ 0,

P(Q ∗n ≤ q)
w
→n


H2,γ (q) ∗ H2,γ


−

q
d2


, x0 > 0,

H2,γ


q
d2


∗ H2,γ (−q), x0 < 0.
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In this case, the normalizing constants can be taken as An:q =
arn
|bsn |
=

arn
|x0|

and Bn:q =
brn
bsn
= 1. Finally, if x0 ≠ 0,

P(P∗n ≤ p)
w
→n


H2,γ


p
d2


∗ H2,γ (p), x0 > 0,

H2,γ


−

p
d2


∗ H2,γ (−p), x0 < 0,

where the normalizing constants can be chosen such as An:p = arn |bsn | = arn |x
0
| and Bn:p = brnbsn = (x0)2.

3. If F ∈ DR(H3,0) and d3:n =
asn
arn

(=
ΨF (sn+

√
sn)−ΨF (sn)

ΨF (rn+
√
rn)−ΨF (rn)

)−→n d3, 0 ≤ d3 < ∞ (for the case d3 = ∞, see Remark 3.1), then

P(W ∗n ≤ w)
w
→n H3,0(

w
d3

)∗H3,0(−w) and P(M∗n ≤ m)
w
→n H3,0(

m
d3

)∗H3,0(m), where the trivial limit case occurs if d3 = 0, since in
this case Rrn outweighs Rsn . In this case, we can take 2An:m = An:w = arn = ΨF (rn+

√
rn)−ΨF (rn) and Bn:m = Bn:w = bsn−brn .

Moreover, if F ∈ DR(H3,0),
ΨF (sn+

√
sn)

ΨF (sn)
−→n 1 and ℓn =

asn brn
arn bsn

(=
(ΨF (sn+

√
sn)−ΨF (sn))ΨF (rn)

(ΨF (rn+
√
rn)−ΨF (rn))ΨF (sn)

)−→n ℓ, 0 ≤ ℓ < ∞ (for the case
ℓ = ∞, see Remark 3.1), then

P(Q ∗n ≤ q)
w
→n


H3,0(q) ∗ H3,0


−

q
ℓ


, x0 > 0,

H3,0

q
ℓ


∗ H3,0(−q), x0 < 0.

In this case, the normalizing constants can be chosen such as An:q =
arn
|bsn |

and Bn:q =
brn
bsn

. Finally, If F ∈ DR(H3,0) and
ℓn−→n ℓ, 0 ≤ ℓ <∞,

P(P∗n ≤ p)
w
→n


H3,0

p
ℓ


∗ H3,0(p), x0 > 0,

H3,0


−

p
ℓ


∗ H3,0(−p), x0 < 0,

where the normalizing constants can be chosen such as An:p = arn |bsn | and Bn:p = brnbsn .

Proof. First, it is easy to check the validity of the following equalities:

W ∗n =


R∗sn −

arn
asn

R∗rn , if An:w = asn , Bn:w = bsn = 0,

asn
arn

R∗sn − R∗rn , if An:w = arn , Bn:w = bsn − brn ,
(3.6)

M∗n =


R∗sn +

arn
asn

R∗rn , if 2An:m = asn , Bn:m = bsn = 0,

asn
arn

R∗sn + R∗rn , if 2An:m = arn , Bn:m = bsn − brn ,
(3.7)

Q ∗n =


R∗sn
R∗rn

, if An:q =
asn
arn

, Bn:q = bsn = 0,

−
ℓnR∗sn − R∗rn
|bsn |−1Rsn

, if An:q =
arn
|bsn |

, Bn:q =
brn
bsn

,

(3.8)

P∗n =



R∗snR
∗

rn , if An:p =
asn
arn

, Bn:p = bsn = 0,

asn
bsn

R∗snR
∗

rn + ℓnR∗sn + R∗rn , if An:p = arnbsn , Bn:p = brnbsn , x
0 > 0,

asn
|bsn |

R∗snR
∗

rn − ℓnR∗sn − R∗rn , if An:p = arn |bsn |, Bn:p = brnbsn , x
0 < 0,

(3.9)

where the last two equalities in (3.9) are valid for large n (note that, since brn , bsn−→n x0, then for large n, sign(brn), sign(bsn) =
sign(x0)). Now, by using (3.1), Theorems 1.1, 2.1 and the condition ΨF (rn)

ΨF (sn)
−→n c, 1 ≥ c ≥ 0 (note that, since the functionΨF (n)

is non-decreasing, then for large n, we get arn < asn and 0 ≤ arn
asn
=

ΨF (rn)
ΨF (sn)

≤ 1), the four limit relations in the first part
of the theorem follow immediately from the first part of the relations (3.6)–(3.9), respectively. On the other hand, for the
statistic Q ∗n in the second and third parts of theorem we have bsn

asn
−→n ∞ (this limit relation is satisfied in the third part due
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to the condition ΨF (sn+
√
sn)

ΨF (sn)
−→n 1). Therefore, by applying Lemma 3.3 in Barakat (1998), we get

Rsn

|bsn |
p
→n


+1, if x0 > 0,
−1, if x0 < 0,

(3.10)

where p
→n means convergence in probability, as n→∞. Now, by using (3.1), (3.10) (for the statistic Q ∗n ), Theorems 1.1, 2.1,

the relation asn
bsn
−→n 0, and the condition ℓn = d2:n =

x0−ΨF (sn)
x0−ΨF (rn)

−→n d2, 1 ≥ d2 ≥ 0 (note that, since the function ΨF (n) is

non-decreasing, then for large n, we get asn < arn and 0 ≤ d2:n =
asn
arn
≤ 1), the four limit relations in the second part of the

theorem follow immediately from the second part of the relations (3.6)–(3.9), respectively. Finally, by using (3.1), (3.10) (for
the statistic Q ∗n ), Theorems 1.1, 2.1, the relation asn

bsn
−→n 0 and the condition ℓn−→n ℓ, the four limit relations in the third part of

the theorem follow immediately from the second part of the relations (3.6)–(3.9), respectively. �

Remark 3.1. If d3 = ∞, we get the trivial convergence P(W ∗n ≤ x), P(M∗n ≤ x) w
→n H3,0(x), since in this case Rsn outweighs

Rrn . This fact, can easily be verified if we take the normalizing constants 2An:m = An:w = asn = ΨF (sn +
√
sn)− ΨF (sn) and

Bn:m = Bn:w = bsn − brn , to get the equalities W ∗n = R∗sn −
arn
asn

R∗rn and M∗n = R∗sn +
arn
asn

R∗rn . On the other hand, clearly, if
ℓn−→n ℓ = 0, we get the trivial convergence

P(Q ∗n ≤ q)
w
→n


H3,0(q), x0 > 0,
H3,0(−q), x0 < 0,

(3.11)

since in this case Rrn outweighs Rsn . However, if ℓ = ∞, we get also the same trivial convergence (3.11), but in this case Rsn

outweighs Rrn . This result can easily be seen, if we use the normalizing constants An:q =
asn
|brn |

and Bn:q =
bsn
brn

, in order to get

the equality Q ∗n =
R∗sn−ℓ−1n R∗rn
|brn |−1Rrn

.

Corollary 3.1. By virtue of Theorem 3.2, we can deduce an important fact that in most cases of the convergence (specially, for
the 2nd and the 3rd parts), we have the asymptotic relations Q ∗n

w
=n ±W ∗n and P∗n

w
=n ±M∗n , where Xn

w
=nYn means that both the df’s of

random sequences Xn and Yn weakly converge to the same limit. This fact has considerable practical importance.

Example 3.1. For the Weibull distribution, F(x) = P(X ≤ x) = 1 − e−x
α
, x, α > 0, we can easily show that ΨF (u) = u

1
α .

Therefore, ΨF (n+
√
n)

ΨF (n) = (1 + 1
√
n )

1
α→n 1. Moreover, ΨF (n +

√
n) − ΨF (n) = (n +

√
n)

1
α − n

1
α = n

1
α

1
α
√
n (1 + ◦(1)). Thus

ΨF (n+
√
n)− ΨF (n)→n

1
α
, if α = 2 and ΨF (n+

√
n)− ΨF (n)→n∞, if α > 2. Thus, if rn = r = constant, Theorem 3.1 implies

P(W ∗n ≤ w)
w
→n


H3,0(w), if α > 2,

H3,0(w) ∗


Γ r


w2

4


I(−∞,0)(w)


, if α = 2,

P(M∗n ≤ m)
w
→n


H3,0(m), if α > 2,

H3,0(m) ∗


Γr


m2

4


I(0,∞)(m)


, if α = 2,

P(Q ∗n ≤ q) w
→n P( 1

Rr
≤ q + 1), and P(P∗n ≤ p) w

→n Γr((p + 1)2), where IA(x) is the usual indicator function. On the other hand,

if rn
sn
→n ℓ2, 0 < ℓ ≤ 1 and sn − rn→n∞ (clearly, the relation rn

sn
→n ℓ2, 0 < ℓ < 1, implies sn − rn→n∞), we get, d3:n→n ℓ

α−2
α and

ℓn→n ℓ2. Therefore, Theorem 3.2, implies that P(W ∗n ≤ w)
w
→n H3,0(ℓ

2−α
α w) ∗ H3,0(−w), P(M∗n ≤ m)

w
→n H3,0(ℓ

2−α
α m) ∗ H3,0(m),

P(Q ∗n ≤ q) w
→n H3,0(q) ∗ H3,0(−

q
ℓ2

)and P(P∗n ≤ p) w
→n H3,0(p) ∗ H3,0(

p
ℓ2

).
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